Defending Your Web Applications From Attack

By David Strom

(originally written 3/06)
Allow me to show you how to hack into your own Web site. You don't need any specialized tools other than a Web browser, and you don't need any specialized skills either. It doesn't take much time, and the payoffs could be huge: an intruder could easily obtain a copy of your most sensitive data in about the time it takes to read through this analysis.

While there are many exploits, none are as simple or as potentially destructive as what is known as SQL injection. This isn't something new [1], but what is new is how frequent this attack happens, and how easy you can protect your network with relatively little effort and cost.

Let's walk through what is involved with a SQL injection exploit, using examples of both a Web site that we found at random as well as one that had previously been compromised with the hackers publicly describing their methods over the Internet. We will show you the consequences of doing nothing and leaving this front door wide open for anyone to walk into your data center. Finally, we will talk about ways that you can prevent this from happening in the future, and what choices you have to protect your Web sites and corporate networks.

TODAY'S THREAT LANDSCAPE

It used to be most attacks happened through email or remote penetrations into the corporate network. With the improvements in email virus protection and greater deployment of firewalls, today's threat landscape is a very different one. In a word, it is all about applications, and in particular, Web-based applications that tie into traditional databases and interact with browsers across the Internet.

Symantec's latest threat report (March 2006) starts off ominously: "Attackers have moved away from large, multipurpose attacks on network perimeters and toward smaller, more focused attacks on client-side targets.... Targeted attacks on Web applications and Web browsers are increasingly becoming the focal point for cyber criminals." The company reports for more than a year, a compromise of Microsoft SQL Server was the most popular attack, found in almost half of all exploits reported. Web application vulnerabilities made up for more than two thirds of the attacks, and their number increased from 2004 to 2005.

Clearly, Web sites are easy targets. They are exposed to the general Internet, indexed efficiently by Google and other search engines to show vulnerable areas, and often overlooked by security specialists. Most intrusion prevention and detection systems allow all Web traffic free reign on corporate networks, so that any exploit involving a Web server and that originates from a random browser are harder to detect and block. Also, some exploits, such as the SQL injection one that we'll show you shortly, don't involve much in the way of sending and receiving traffic across a network. This makes them harder still to detect and prevent.

HOW DATABASES AND WEB SERVERS WORK TOGETHER

Before we begin our tutorial on SQL injection, a few words about how Web and database servers work together. Most databases can be thought of as a collection of tables of information: customer address records in one table, and purchase records and inventories of products in two others. For a typical ecommerce customer, a browser is used to start the purchasing process by first finding some product of interest. This kicks off a query of the inventory to see if in stock, and then the Web server produces a shopping cart page that shows what items are about to be purchased.

Because Web servers are stateless, there has to be some way for the server to track what path a browser uses as the shopper moves from page to page on the site and queries these particular databases on their journey to ultimate check-out and purchase. There is, and a variety of techniques are used for this purpose, including setting cookies on a user's machine, using downloaded programs that save the browser state, using customer logins and passwords, and storing the Web queries in special tables of their own.

And while we have used the example of an ecommerce site, the issue is more general. There are Web sites that don't sell anything, but allow visitors access to information, such as the IRS to download particular tax forms, the local community center to see what times it is open to the public, or the local library to see if a book is on its shelves. In each case, the browser is requesting information from a particular database, and the Web server is used to collect, organize, and present the information. And as Web 2.0 technologies such as Ajax become pervasive, there is more and more information that is presented to browsers dynamically and more information that originates from databases.

In order for all this to work, the request for information is translated from the Web server into commands that the database server understands. Think of the Web browser as an extended keyboard that is operated across the Internet, but directly connected to your database server in your data center Indeed, that is a good picture to keep in mind, because by the time a SQL injection exploit is finished, it will seem as if the hacker is directly typing in commands to your servers.

The problem is that Web developers tend to think that database queries are coming from a trusted source, namely the database server itself. But that isn't always the case, and a hacker or even a casual browser can often take control over the Web server by entering commands that appear to be valid SQL commands in the right places. The trick is finding the right places.

There are two situations where the Web and databases intersect that are relevant for our discussion on SQL injection:

-- Places that directly enter database parameters into the URL itself, or

-- Fill-in forms on Web pages that will take this information and pass it along to the database server via the HTTP POST command.

Think about this for a moment. There are probably dozens, if not hundreds of places across your various Web sites that fit these two situations. Can you test them all to make sure your developers did everything possible to lock things down? What about a simple form that sends a password back to a particular email address in case a (what you might have thought legitimate) user forgot it? This is a simple and very effective way for a hacker to penetrate your defenses and assemble a very complete picture of your database structure, table names, and field names. [2]

Let's look at the first situation and give you more context. Before we do, we first need to talk about SQL command syntax. Every database server has a similar series of commands to query its tables, narrow down results to a few specific entries, and combine information from one table to another. While a general tutorial on SQL database syntax is outside the scope of this paper, there are a few commands that are easily explained. Here is a typical SQL statement:

SELECT some-data FROM some table WHERE some-condition-is-met OR something-else-here

Here the WHERE specifies a condition, such as user name is equal to "John Jones" or an account matches a particular ID number. When this command is given to the database server, it returns the results of this query with all matching items that meet this condition. The "some-data" portion of the command provides the view of the results with particular database fields, such the "Name, Address, Phone number" fields in a customer database. If you are thinking of tables, each row in the table is a different data item, and each column in the table is the different field for each particular item.

Now what does this have to do with the Web? When we put this data on the Web, we use URLs and forms to assemble the query statements. Here is what a typical URL might look like on a Web site that has a catalog of things for sale, and just after a user has clicked on a particular item to get more information about it:

http://www.yourwebsite.com/askforparticularitem.asp?id=6969
We'll get to what happens when you monkey with this URL, but for now, realize that the item or ID number in the URL gets taken by the Web server and placed into a SQL query such as the following:

SELECT name, description, price FROM itemtable WHERE id=6969

The SQL server returns the name, description and price details as a result, and then passes this information back to the Web server, where it is displayed on the page. The same thing happens with a Web form: the parameter gets passed from the form to the database server, and then back to the Web server for presentation and display.

ANATOMY OF A HACK

Now comes the good part. Let's assume that a bad guy wants to get into your databases and steal your customers. How does it work? Simple, they first find you on the Internet via Google or some other search engine.

Most database servers can be easily found on Google by searching for the right keywords. There are just a few typical search terms, such as login.asp, asp?id=, php?id= and other statements indicating database queries that are being passed from the Web server to the database, including Web forms as we mentioned earlier.

So we do a search on gov: php?id= and one of the results is this site, dealing with Scotland's Biodiversity resources:

http://www.biodiversityscotland.gov.uk
Now let's browse around the site until we get to a page that has specific information -- we will see a URL like something below:

http://www.biodiversityscotland.gov.uk/pageType2.php?id=8&type=2&navID=30
Here is where we begin our hack. Change the last part of the URL to the following:

http://www.biodiversityscotland.gov.uk/pageType2.php?id=999
And the page is returned with a slew of error codes as shown in the below screen shot:

[image: image1.png]Fle Edt View Favortes Took Help

(€ ®] [B] @D Oserh Foravoies @) 2 F -

B«

Links >

otice: Undefined variable: type in D: homelwww biodiversityscotland.co.uk!SiteMark2\ssilpageTop.php on line 4

iteMark?\ssilpageTop.php on line 5

otice: Undefined variable: type in D: home'wwiw.biodiversityscotland.co.uk

eMark2\ssilpageTop.php on line 14

Warning mysql_fetch_assoc(): supplied argument is not a valid MySQL result resource in D: homelwww biodiversityscotland. co.uk

eMark2\ssilpageTop.php on line 17

Warning mysql_fetch_row(): supplied argument is not a valid MySQL resul resource in D: home!www biodiversityscotland. co.uk

otice: Undefined index: body in D:'homelwww biodiversityscotland.co.uk\SiteMark2\ssilpageTop.php on line 21

lodiversity? What is Scotland doirjg? Who's involved? What can1do? News & Publications | Biodiversity Duty Contact us

Notica: Undsfined variable: navD in
D:\home \ww.biodiversityscoland.co.ul\SiteMark2Notice: Undsfined index: id in Di\home \wwwur biodiversityscotiand.co.uk\SiteMark2

\ssi'nav.php on line 3 \pageTypez.php on lins 59

Warning: mysal_fetch_rou(): supplied argument is not a valid MySQL result resource

Warning: mysal_fetch_rou(): supplied argumant is
in D:\home \www.biodiversityscotland.co.uk'\ SiteMark2\pageType2.php on line 62

not 3 valid MySQL result resource in
D:\home \urun.biodiversityscotland.co.uk\SiteMarkz
\ssinav.php on line 5

© Internet

4 E a QL)%

&] Error on page,

Now, before you get frustrated because of the errors, realize that we are finished with our experiment. The goal with SQL injection is to get error pages, reading the codes like a fortune teller reads tea leaves or lines on your hand. These error codes provide a great deal of rich and important information about the state of affairs with how the database is constructed, the location of resources, and even in some cases the names of the database fields or other contents that can be used to further construct more compromising queries.

So what do we know from this very simple experiment? First, that the site is running a program called SiteMark and also running MySQL as its database server. Second, we have the directory where the PHP scripts are located. And even the lines of the program that are generating the errors are shown for us here. All we did was send a single page request to get all this information! We didn't have to learn any new skills, download any hacker tools, or do anything other than type in a single line of text.

Now, admittedly this isn't a site that is going to attract a whole lack of criminals, looking to crack into details about Scotland's rich ecological history. But it shows you how easy it is to get SQL commands sent to a Web server, and begin our exploits.

MORE SERIOUS STUFF

Let's take things a step further, and show you further how databases are compromised. We'll use for our guide a Russian Web site that posted hacking instructions on how to compromise a US state government Web site:

http://www.xakep.ru/post/29550/default.asp
While the site is in Russian, you can translate it automatically using Babelfish or some other service to get the drift. What you see here is a step-by-step series of instructions on how RI.GOV was penetrated. Of course, since this hacking manual was published, the exploit was removed, but this is a very real demonstration of an actual exploit. The Rhode Island government site still contains all sorts of detailed taxpayer information on property records, among other things that can be used for identity theft and other nefarious means.

There are two key elements to the Rhode Island attack that are explained in Russian. First is the way that a hacker adds text to a normal SQL query statement using various characters and commands to trick the database server into delivering actual results, rather than just error messages.

Depending on the actual SQL query, you can add some like this to the end of the URL or inside an appropriate Web form:

' or 1=1--
" or 1=1--
or 1=1--
' or 'a'='a
" or "a"="a
') or ('a'='a

Each line of text typically starts with a single quote, includes an OR statement and then what we used to call a tautology in logic class -- a statement that is always true (1=1). Taken all together, what we are doing here by appending this text is telling the database server to deliver EVERYTHING, since we are asking for either a single record or else "1=1" -- meaning give us all records.

The second element to the Russian instructions are how to take the feedback and error codes generated by the Rhode Island site and use it to further investigate the data structures of the site. The instructions show you how the hacker was able to obtain a series of passwords, pass them through a password cracking utility, and gain total access to the database. Subsequent screen images show the hacker using a secure telnet login and gaining access to the server and then to the data itself.

RECAPPING WHAT WE HAVE LEARNED SO FAR

So what have we learned? All SQL injection starts off by changing or adding text to a vulnerable area on a Web site: either a URL with an embedded hard-coded query statement or inside an otherwise innocuous Web form. Information is then passed to the database server and acted upon.

There are two basic different kinds of attack plans: manipulation of the SQL query string and compromised logins, and both were shown in the Russian instructions. The most well known attack is to modify the WHERE clause of the user authentication statement so the WHERE clause always results in TRUE. A second method is by adding information to the string and therefore a series of new commands, such as by using an Execute command in Microsoft SQL Server.

By a series of attempts, a hacker can gain control over the server by a series of educated guesses and using well-known techniques to send information to the database server and monitor the replies. Once a bad guy has this information, s/he can begin to manipulate your authentication defenses and at worst, gain total control over your data. But even if this doesn't happen, at the very least a hacker can find out all sorts of things about your network and database structure.

DIFFERENCES IN DATABASE SERVERS

The various database servers have different features when it comes to two critical areas: the ability to send multiple commands together and the ability to send an executable command. Taken together, this makes it easier for a hacker to stuff extra text in query statements and compromise these servers. See the table below.

	Product
	Multiple statements?
	Execute statement?

	Oracle
	No
	No

	Microsoft SQL Server
	Yes
	Yes

	Postgre SQL
	Yes
	No

	MySQL
	No
	No

As you can see, Microsoft's SQL Server is vulnerable in both areas.

POTENTIAL PROTECTIVE MEASURES

So what can you do to protect your data? Well, short of disconnecting your corporate network from the Internet, there are two basic strategies you can follow.

1. First, lockdown your database servers to remove any potential backdoors.

You should do this in any event, as just basic best security practices. While SQL injection comes in through the front door, you should still practice safe computing and treat your database servers as yet another operating system that requires hardening, similar to what you do with your other servers. There are a number of places that provide detailed information here, including [5], [6] and [7].

Here is a quick summary of these precautions. Delete all the sample files and applications on your production servers. They aren't needed and just serve as a signpost for hackers to determine how to exploit you further. Don't use 'local-host only' security, especially on proxies. Watch what exactly is changed when you upgrade. Eliminate any stored procedures that you aren't using directly to support your applications.

Also, isolate your database servers from the Internet. Prevent direct connection to the database server on vulnerable ports (such as TCP port 1433 and UDP port 1434). Also ensure that the database server cannot connect out to the Internet on vulnerable ports (such as TCP ports 21, 80, 139, 443, 445 or 1433 and UDP port 53).

2. Do a better QA job and make sure you validate your input scripts and strings that are sent to the database.

It goes almost without saying that developers can't test everything. But you can do better at looking at all of your Web scripts and programs and test them for exploits. Do you have range limits for all queries? Do you have the appropriate access rights for all users, including the default rights for Web users? Do you apply input validation checks for all places that accept input from the Web?

One common mistake is not checking stored procedures, thinking they are outside the bounds of SQL injection. Not true, as [6] indicates very graphically. Wherever possible, you should restrict the access of Web-based applications to stored procedures and make sure you filter any data that is passed to them to eliminate potential exploits.

The key takeaway here: best to validate all inputs that come from the Web, keeping in mind what SQL injection can do.

BETTER PROTECTIVE MEASURES: BREACH SECURITY

The problem with all of the above protective measures is that only work for the moment in time that you implement them. As soon as a developer creates a new Web application, you are once again vulnerable. They also are a lot of work to maintain, and to enforce, and will require a fair amount of skill to implement properly. These measures also assume that your original Web and database developers are still around, still remember what they did, and can find their way through their code to make the necessary protective measures. That is oftentimes a tall order, especially given the rate of change in Web sites these days.

There is a better way, and that is why we recommend Breach Security's Web Defend security appliance. It is a very cost effective solution, takes a few minutes to setup, doesn't require any special skills to maintain, and will keep your corporate data safe and prevent any SQL injection exploit from ever happening, no matter what applications you create down the road.

WebDefend can complete the application development lifecycle by providing real-time application protection for production applications with passive vulnerability assessment. The product sits behind the corporate firewall and operates off a span port on the switch to analyze traffic and make recommendations about security measures.

Although WebDefend is not inline, it is able to prevent attacks against Web applications by operating with existing network infrastructure devices, such as firewalls and load balancers. Since Web application attacks are targeted and require reconnaissance, WebDefend is able to block attacks from a hacker before they are able to gather enough information to launch a successful targeted attack. WebDefend is able to identify and correlate the events that show an attacker is researching the site, giving organizations the power to see and block sophisticated targeted attacks on the application.

WebDefend protects Web applications from SQL injection attacks by performing validation on all user input to the application. Each input field or query parameter within the application is identified, typed and specified in the security profile. While validating traffic against an application’s security profile, WebDefend will check all user input to ensure that it is the correct data type and has the appropriate data length. Also, it will check to see that the data does not include any special characters or SQL commands. WebDefend will prevent any SQL injection attacks against a Web application by ensuring that user input is only data with no attempts to circumvent an application’s normal behavior.

WebDefend is the best solution to protect high-value Web applications and the data behind them from targeted Web-based attacks. WebDefend provides comprehensive Web application protection through an architecture designed to address the spectrum of modern Web application threats. Automated, behavior-based security profiles are created and maintained for each Web application, ensuring that unique application vulnerabilities are successfully addressed. This positive security model ensures that only acceptable behaviors are allowed, thereby protecting against even unknown threats to the application.

SUMMARY

So we have shown you how easy it is to penetrate the average Web site and gain information about the underlying database structures inside a corporate firewall. The notion of SQL injection isn't new, but is still widely misunderstood and many sites are still vulnerable to attack. By using a security appliance such as WebDefend, along with beefing up security practices for Web-accessible data, you can fill these holes in your network security as well as provide for tailored application-specific security and comprehensive protection against the array of potential Web-based threats.

ADDITIONAL READING AND NOTES

1. SQL injection isn't new, as we said at the beginning of this paper. The earliest mention that we could find was an article in Phrack magazine by "Rainforest puppy" that was published in 1998!

http://www.wiretrip.net/rfp/txt/phrack54.txt
2. A basic step-by-step introduction on the topic, showing you how to assemble information on a target's data structure using a simple Web form by Steve Friedl (Jan 2005):

http://www.unixwiz.net/techtips/sql-injection.html

3. Oracle-specific examples of SQL injection from Security Focus (Nov 2001) and Net-Security.org (Jan 2004) contain lots of good information for other types of SQL servers as well:

http://www.securityfocus.com/infocus/1644
http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf
4. SPIDynamics' white paper on the subject goes beyond the basics (Sept 2005):

http://www.spidynamics.com/assets/documents/WhitepaperSQLInjection.pdf
 5. A more complete step-by-step walkthrough of various exploits:

http://www.securiteam.com/securityreviews/5DP0N1P76E.html
6. More complete walkthrough of exploits, along with a nice description at the end of the paper on methods to lockdown your Microsoft SQL Server (2002):

http://www.nextgenss.com/papers/advanced_sql_injection.pdf

7. A more general resource on Microsoft SQL Server security, including articles, free assessment tools and a nice lockdown script, all from Chip Andrews:

http://www.sqlsecurity.com
8.ODBC error messages by David Litchfield, given at a Black Hat conference:

http://www.blackhat.com/presentations/win-usa-01/Litchfield/BHWin01Litchfield.doc

ABOUT THE AUTHOR

David Strom is a freelance writer and consultant who has written two books and thousands of articles on networking, security, and computing topics. He was founding editor-in-chief for Network Computing magazine and has created and run the editorial operations of dozens of Web magazines over his career. He has worked in IT departments of private industry and government, and can be reached at david@strom.com.

